ATRIP associates with replication protein A-coated ssDNA through multiple interactions.
نویسندگان
چکیده
The ATR (ATM- and rad3-related)-mediated checkpoint pathway has a crucial role in regulating the cellular responses to DNA damage and DNA-replication stress. ATRIP (ATR-interacting protein), the regulatory partner of ATR, binds directly to replication protein A (RPA)-coated ssDNA and enables the ATR-ATRIP complex to recognize this DNA damage-induced structure. Here, we show that ATRIP associates with RPA-ssDNA through multiple interactions. Two major RPA-ssDNA-interacting domains of ATRIP were mapped to the regions flanking the conserved coiled-coil domain. In contrast to a recent article, we found that ATRIP mutants lacking the N terminus retained the ability to bind to RPA-ssDNA, suggesting that the multiple interactions between ATRIP and RPA-ssDNA may function redundantly in the recruitment of ATR-ATRIP. Unexpectedly, one internal region of ATRIP exhibited affinity to ssDNA, suggesting that ATRIP may interact with ssDNA in the ATRIP-RPA-ssDNA complex. Also, the N terminus of ATRIP associated with RPA-ssDNA in two distinct ways, indicating a dynamic and regulated association between ATRIP and RPA-ssDNA.
منابع مشابه
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.
The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-med...
متن کاملATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA.
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase checkpoint pathway maintains genome integrity; however, the role of the sirtuin 2 (SIRT2) acetylome in regulating this pathway is not clear. We found that deacetylation of ATR-interacting protein (ATRIP), a regulatory partner of ATR, by SIRT2 potentiates the ATR checkpoint. SIRT2 interacts with and deacetylates ATRIP at lysine 32 (...
متن کاملHerpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection.
Like other DNA viruses, herpes simplex virus type 1 (HSV-1) interacts with components of the cellular response to DNA damage. For example, HSV-1 sequesters endogenous, uninduced, hyperphosphorylated RPA (replication protein A) away from viral replication compartments. RPA is a ssDNA-binding protein that signals genotoxic stress through the ATR (ataxia telangiectasia-mutated and Rad3-related) pa...
متن کاملA Model to Investigate Single-Strand DNA Responses in G1 Human Cells via a Telomere-Targeted, Nuclease-Deficient CRISPR-Cas9 System
DNA replication stress has the potential to compromise genomic stability and, therefore, cells have developed elaborate mechanisms to detect and resolve problems that may arise during DNA replication. The presence of single-stranded DNA (ssDNA) is often associated with DNA replication stress and serves as a signal for both checkpoint and repair responses. In this study, we exploited a CRISPR-Ca...
متن کاملThe human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon.
The checkpoint Rad proteins Rad17, Rad9, Rad1, Hus1, ATR, and ATRIP become associated with chromatin in response to DNA damage caused by genotoxic agents and replication inhibitors, as well as during unperturbed DNA replication in S phase. Here we show that murine Rad17 is phosphorylated at two sites that were previously shown to be modified in response to DNA damage, independent of DNA damage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2006